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Abstract- The  cross-correlation based ultrasonic
elastography is limited for application due to distortion of
the echo waveform by tissue lateral deformation during
axial compression. To reduce this kind of decorrelation
effect, a time-efficient method called 2-D Spatial
Comprehensive Correlation algorithm is proposed in this
article. The basic idea of this method is to combine spatial
adjacent cross-correlation functions as a comprehensive
time shift estimator. Simulation model based on finite
element analysis is applied to evaluate the method
proposed in this work. Results indicate that this method
can reduce the decorrelation effect of tissue lateral
displacement with less increase of computation.

Key Words- Ultrasound, Elastography, Comprehensive
correlation.

1. INTRODUCTION

Elastography, which is a method for imaging the elastic
properties of soft tissues using ultrasound echo signal, is
under investigation for years. This technique is based on
strain reconstruction through time shift which is obtained by
applying cross-correlation analysis between corresponding
A-scan echo segments pre- and post- tissue compression. The
estimated strain is as follows [1],

S@i) = At(@Q)—At(i-1)
2dz /¢

where S(7) is strain of the target tissue, A #(7) is the time shift

Q)

of the i-th echo segment pair, dz is the distance between (i-
1)th and i-th segments, ¢ is ultrasound speed.

1-D research on elastography is based on the assumption
that tissue is deformed uniformly and uniaxially under a
quasi-static compression. The scatterers within the ultrasound
beam are modeled as points between serial springs in axial
direction. In fact, the tissue after quasi-static compression
undergoes a complex motion which depends on its elasticity
distribution and boundary condition. This motion of
scatterers decorrelates the echoes obtained pre- and post-
tissue compression in elastography.

The decorrelation effect of complex tissue motion was

recognized. Confined compression [2] and lateral tracking
method [3] were introduced to reduce this effect. However,
confinement may not be easily applied on target which is
deep in tissue and the lateral tracking method needs great
computation effort.

In this paper, a time-efficient 2-D spatial comprehensive
correlation method is proposed to reduce the decorrelation
effect of lateral displacement. Simulation results show that
this method can reduce the error of estimated axial strain with
comparable processing time as that of 1-D method.

II. METHOD

The elastography experiment installation is illustrated in
Fig. 1. The tissue is compressed between two flat friction free
compressor with an ultrasound array transducer embedded in
one of them.
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Fig. 1. Elastography experiment setting

In 1-D case, for j-th sub-transducer, the time shift A #(i) in
Eq. (1) is determined by locating the maximal peak of the
cross-correlation function of echoes obtained before and after
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tissue compression. The cross-correlation function is given
by

Ra() = [ @t + Dt @

i,

where 7;is the length of i-th tracing echo segment, 7, r, are
echoes obtained pre- and post-compression

j-th sound beam
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Fig. 2. Sketch of scatterers lateral motion for homogeneous
tissue after compression.

The scatterer’s moving states for homogeneous tissue is
shown in Fig 2. Thus, the pre- and post-compression echoes
are given by

n()=s,(0)+s, ) (€)

nM=s,@+s', @) 4)

where s,(f), k=b, c are the scattering signal from the
scatterers in the regions of b, ¢ which are corresponding to
compressed regions b’, ¢’ before compression, respectively.
s’y(f), k=a, b are the scattering signal from compressed
region a’, b’ (shown in Fig. 2). Thus, the cross-correlation
function of Eq. (2) can be expressed as follows

Ra() = [r(@)n(c +dr

i

=Tl J-Sjb (T)S'jb (t+t)dr +J-Sjb (T)S'ja (T +0)dt

ilT T,

i

+[s,. (@5, @+0dT+[s, (D), @+0dT| )
T, T

i i

The first term in Eq. (5) is the cross-correlation of echoes
from the scatterers remain in the beam-width after
compression. The maximal peak location of this term can be
regarded as the estimate of the tissue displacement. The other
three terms in Eq. (5) are the cross-correlation functions
include echoes from scatterers which move in and out of the
beam-width and indicate the influence of the tissue lateral
displacement. These three terms can be regarded as random
noise which decorrelates the first term. Thus, if we combine
the lateral adjacent cross-correlation functions, the
decorrelation effect of tissue lateral displacement may be
reduced.
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Fig. 3. The sketch of the 2-D Spatial Comprehensive
Correlation algorithm. The solid lines in the echo waveform
of each ultrasound beam represent the echoes obtained before
tissue compression at same axial position and the dash lines
represent the corresponding echoes after compression. The 1-
D cross-correlation function of each echo pairs obtained from
Eq. (2) is multiplied by the weight coefficient o and
combined into 2-D cross-correlation function. The maximal
peaks of 1-D and 2-D cross-correlation function are marked
by a gray triangle and a black triangle, respectively.



2-D Spatial Comprehensive Correlation method is to apply
combination of lateral adjacent 1-D cross-correlation
functions as the substitute of central ultrasound beam’s cross-
correlation function as illustrated in Fig. 3. The 2-D
comprehensive cross-correlation function corresponding to
Jjth ultrasound beam can be obtained by

Jjtn Jj+n

R'(D= Y aR() Doa=1 (6

i=j-n i=j-n

where R(f) represents the cross-correlation function of the
pre- and post-compression echoes corresponding to ith
ultrasound beam from Eq. (2), « is the weight coefficient, n
is the comprehensive coefficient which define the cross-
correlation function associated with that of jth ultrasound
beam. If n=0, Eq. (6) turns to be the form of Eq. (2). It means
that the definition of 2-D Spatial Comprehensive Correlation
method includes that of 1-D cross-correlation method. It must
be noted that the 2-D spatial comprehensive correlation
method does not filter estimated strain, but filters the
correlation function to obtain the comprehensive correlation
function peak location.

III. RESULTS AND DISSCUSSION

The simulated echoes are obtained by modeling an array
transducer with central frequency 3.5MHz and bandwidth
IMHz. The beam-width is 2mm and separated by 0.4mm.
The scatterers are uniformly distributed in the medium with
the density 16mm?’. The scatterers’ diameters which are
positive proportional to the scattering strength have a
Gaussian distribution with an average of 0.05 mm and a
standard deviation of 0.0lmm. The speed of sound c in the
medium is taken to be constant at 1540m/s and the sampling
rate of ultrasonic echoes is taken as 40 MHz.

Uniform elastic medium models and hard circular lesion
models are studied. The ROI is 40mmx60mm and the
Young’s modulus of inclusion is set to be two times of that of
surrounding tissue and the Poisson’s Ratio are the same of
0.495 since the tissue is incompressible in general. The
diameter of lesion is set to be 10mm.

The location of the scatterers after compression is
computed by commercial available Finite Element Analysis
(FEA) software (Mentat Version 3.3, MARC Analysis
Research Corporation, USA) as plane strain states.

The multi-scale elastography procedure presented in
previous work [4] with optimal tracing segment length was
applied to reconstruct the simulated strain field using the 2-D
Spatial Comprehensive Correlation method.

Fig 4 illustrates the SNR, (Mean to Standard Deviation
ratio of reconstructed strain) for 30 homogeneous tissue
models. The result shows that with the increase », the
estimated axial strain is close to ideal strain.

SNR.

Lateral position /; (mm)

Fig. 4. SNR, of homogeneous tissue models of 2-D method.
Tracing segment length is 3mm with 70% overlap. The
compression ratio is 0.5%.

Fig. 5. shows the result of reconstructed strain images
for hard circular lesion model. Fig. 5 (a) is the axial strain
image of FEA calculation with 0.5% axial compression. Fig.
5 (b) (c) and (d) are the strain profiles reconstructed by 2-D
method with comprehensive coefficient n=0 (which becomes
1-D case), 1, 2, respectively and the weight coefficient ¢,
equal to each other. These figures illustrate that the strain
profile reconstructed using echoes from the edge of
transducer was distorted by the lateral displacement of tissue.
The distortion of reconstructed strain was decreased and the
decorrelation effect of tissue lateral displacement was
reduced by the 2-D method with increasing n.

Since the combination of 1-D cross-correlation function is
a summation procedure, the computation effort is comparable
with 1-D case. As shown in Fig 5. the trade off for reduction
of decorrelation effect by tissue lateral displacement is the
sharpness decrease of lesion’s edge. However, with the
increase of SNR,, the sharpness decrease is acceptable.

(a) (b)



(c) (d)

Fig. 5. Axial strain profiles for lesion model. Tracing
segment length is 3mm with 70% overlap. The compression
ratio is 0.5%. (a) is the strain image of FEA calculation. (b)
(c) and (d) are the strain profile reconstructed by 2-D method
with comprehensive coefficient #»=0 (which becomes 1-D
method), 1, 2, respectively and the weight coefficient ¢, are
equal to each other.

IV. CONCLUSION

In this paper, a 2-D Spatial Comprehensive Correlation
algorithm is proposed to reduce the elastogram errors by
tissue lateral displacement. Simulation results demonstrated
that 2-D method can be applied to reduce decorrelation of

lateral displacement with less increase of computation effort.
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